For convection cells on the sun’s surface, see Granule (solar physics).

A conventional crystalline silicon solar cell (as of 2005). Electrical contacts made from busbars (the larger silver-colored strips) and fingers (the smaller ones) are printed on the silicon wafer.

A solar cell, or photovoltaic cell (previously termed “solar battery”[1]), is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical and chemical phenomenon.[2] It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Solar cells are the building blocks of photovoltaic modules, otherwise known as solar panels.

Solar cells are described as being photovoltaic, irrespective of whether the source is sunlight or an artificial light. They are used as a photodetector (for example infrared detectors), detecting light or other electromagnetic radiation near the visible range, or measuring light intensity.

The operation of a photovoltaic (PV) cell requires three basic attributes:

  • The absorption of light, generating either electron-hole pairs or excitons.
  • The separation of charge carriers of opposite types.
  • The separate extraction of those carriers to an external circuit.



From a solar cell to a PV system. Diagram of the possible components of a photovoltaic system

Assemblies of solar cells are used to make solar modules that generate electrical power from sunlight, as distinguished from a “solar thermal module” or “solar hot water panel”. A solar array generates solar power using solar energy.

Cells, modules, panels and systems

Main article: Photovoltaic system

Multiple solar cells in an integrated group, all oriented in one plane, constitute a solar photovoltaic panel or solar photovoltaic module. Photovoltaic modules often have a sheet of glass on the sun-facing side, allowing light to pass while protecting the semiconductor wafers. Solar cells are usually connected in series and parallel circuits or series in modules, creating an additive voltage. Connecting cells in parallel yields a higher current; however, problems such as shadow effects can shut down the weaker (less illuminated) parallel string (a number of series connected cells) causing substantial power loss and possible damage because of the reverse bias applied to the shadowed cells by their illuminated partners. Strings of series cells are usually handled independently and not connected in parallel, though as of 2014, individual power boxes are often supplied for each module, and are connected in parallel. Although modules can be interconnected to create an array with the desired peak DC voltage and loading current capacity, using independent MPPTs (maximum power point trackers) is preferable. Otherwise, shunt diodes can reduce shadowing power loss in arrays with series/parallel connected cells.[citation needed]


Working mechanism of a solar cell

Main article: Theory of solar cells

The solar cell works in several steps:

  • Photons in sunlight hit the solar panel and are absorbed by semiconducting materials, such as silicon.
  • Electrons are excited from their current molecular/atomic orbital. Once excited an electron can either dissipate the energy as heat and return to its orbital or travel through the cell until it reaches an electrode. Current flows through the material to cancel the potential and this electricity is captured. The chemical bonds of the material are vital for this process to work, and usually silicon is used in two layers, one layer being doped with boron, the other phosphorus. These layers have different chemical electric charges and subsequently both drive and direct the current of electrons.[2]
  • An array of solar cells converts solar energy into a usable amount of direct current (DC) electricity.
  • An inverter can convert the power to alternating current (AC).

The most commonly known solar cell is configured as a large-area p–n junction made from silicon.

 Manufacturers and certification

Further information: List of photovoltaics companies

Solar cell production by region

National Renewable Energy Laboratory tests and validates solar technologies. Three reliable groups certify solar equipment: UL and IEEE (both U.S. standards) and IEC.

Solar cells are manufactured in volume in Japan, Germany, China, Taiwan, Malaysia and the United States, whereas Europe, China, the U.S., and Japan have dominated (94% or more as of 2013) in installed systems.Other nations are acquiring significant solar cell production capacity.


Main article: Solar power in China

Due to heavy government investment, China has become the dominant force in solar cell manufacturing. Chinese companies produced solar cells/modules with a capacity of ~23 GW in 2013 (60% of global production).


Main article: Photovoltaics manufacturing in Malaysia

In 2014, Malaysia was the world’s third largest manufacturer of photovoltaics equipment, behind China and the European Union.[99]

United States

Main article: Solar power in the United States

Solar cell production in the U.S. has suffered due to the global financial crisis, but recovered partly due to the falling price of quality silicon.